Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.

Identifieur interne : 001494 ( Main/Exploration ); précédent : 001493; suivant : 001495

Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.

Auteurs : Chang Dou [États-Unis] ; Wilian F. Marcondes [États-Unis, Brésil] ; Jessica E. Djaja [États-Unis] ; Renata Bura [États-Unis] ; Rick Gustafson [États-Unis]

Source :

RBID : pubmed:28592993

Abstract

BACKGROUND

Feedstock cost is a substantial barrier to the commercialization of lignocellulosic biorefineries. Poplar grown using a short rotation coppice (SRC) system has the potential to provide a low-cost feedstock and economically viable sugar yields for fuels and chemicals production. In the coppice management regime, poplars are harvested after 2 years' growth to develop the root system and establish the trees. The biomass from these 2-year-old trees is very heterogeneous, and includes components of leaf, bark, branch, and wood chip. This material is quite different than the samples that have been used in most poplar bioconversion research, which come from mature trees of short rotation forestry (SRF) plantations. If the coppice management regime is to be used, it is important that feedstock growers maximize their revenue from this initial harvest, but the heterogeneous nature of the biomass may be challenging for bioconversion. This work evaluates bioconversion of 2-year-old poplar coppice and compares its performance to whitewood chips from 12-year-old poplar.

RESULTS

The 2-year-old whole tree coppice (WTC) is comprised of 37% leaf, 9% bark, 12% branch, and 42% wood chip. As expected, the chemical compositions of each component were markedly different. The leaf has a low sugar content but is high in phenolics, ash, and extractives. By removing the leaves, the sugar content of the biomass increased significantly, while the phenolic, ash, and extractives contents decreased. Leaf removal improved monomeric sugar yield by 147 kg/tonne of biomass following steam pretreatment and enzymatic hydrolysis. Bioconversion of the no-leaf coppice (NLC) achieved a 67% overall sugar recovery, showing no significant difference to mature whitewood from forestry plantation (WWF, 71%). The overall sugar yield of NLC was 135 kg/tonne less than that of WWF, due to the low inherent sugar content in original biomass. An economic analysis shows the minimum ethanol selling price required to cover the operating cost of NLC bioconversion was $1.69/gallon.

CONCLUSIONS

Leaf removal resulted in significant improvement in overall monomeric sugar production from SRC biomass. Leaf removal is essential to achieve good yields in bioconversion of poplar. Economic analysis suggests the NLC could be a reasonable feedstock provided it can be obtained at a discounted price.


DOI: 10.1186/s13068-017-0829-6
PubMed: 28592993
PubMed Central: PMC5460468


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.</title>
<author>
<name sortKey="Dou, Chang" sort="Dou, Chang" uniqKey="Dou C" first="Chang" last="Dou">Chang Dou</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Marcondes, Wilian F" sort="Marcondes, Wilian F" uniqKey="Marcondes W" first="Wilian F" last="Marcondes">Wilian F. Marcondes</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle</wicri:cityArea>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena</wicri:regionArea>
<orgName type="university">Université de São Paulo</orgName>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Djaja, Jessica E" sort="Djaja, Jessica E" uniqKey="Djaja J" first="Jessica E" last="Djaja">Jessica E. Djaja</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gustafson, Rick" sort="Gustafson, Rick" uniqKey="Gustafson R" first="Rick" last="Gustafson">Rick Gustafson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28592993</idno>
<idno type="pmid">28592993</idno>
<idno type="doi">10.1186/s13068-017-0829-6</idno>
<idno type="pmc">PMC5460468</idno>
<idno type="wicri:Area/Main/Corpus">001294</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001294</idno>
<idno type="wicri:Area/Main/Curation">001294</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001294</idno>
<idno type="wicri:Area/Main/Exploration">001294</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.</title>
<author>
<name sortKey="Dou, Chang" sort="Dou, Chang" uniqKey="Dou C" first="Chang" last="Dou">Chang Dou</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Marcondes, Wilian F" sort="Marcondes, Wilian F" uniqKey="Marcondes W" first="Wilian F" last="Marcondes">Wilian F. Marcondes</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle</wicri:cityArea>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena</wicri:regionArea>
<orgName type="university">Université de São Paulo</orgName>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Djaja, Jessica E" sort="Djaja, Jessica E" uniqKey="Djaja J" first="Jessica E" last="Djaja">Jessica E. Djaja</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gustafson, Rick" sort="Gustafson, Rick" uniqKey="Gustafson R" first="Rick" last="Gustafson">Rick Gustafson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Feedstock cost is a substantial barrier to the commercialization of lignocellulosic biorefineries. Poplar grown using a short rotation coppice (SRC) system has the potential to provide a low-cost feedstock and economically viable sugar yields for fuels and chemicals production. In the coppice management regime, poplars are harvested after 2 years' growth to develop the root system and establish the trees. The biomass from these 2-year-old trees is very heterogeneous, and includes components of leaf, bark, branch, and wood chip. This material is quite different than the samples that have been used in most poplar bioconversion research, which come from mature trees of short rotation forestry (SRF) plantations. If the coppice management regime is to be used, it is important that feedstock growers maximize their revenue from this initial harvest, but the heterogeneous nature of the biomass may be challenging for bioconversion. This work evaluates bioconversion of 2-year-old poplar coppice and compares its performance to whitewood chips from 12-year-old poplar.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The 2-year-old whole tree coppice (WTC) is comprised of 37% leaf, 9% bark, 12% branch, and 42% wood chip. As expected, the chemical compositions of each component were markedly different. The leaf has a low sugar content but is high in phenolics, ash, and extractives. By removing the leaves, the sugar content of the biomass increased significantly, while the phenolic, ash, and extractives contents decreased. Leaf removal improved monomeric sugar yield by 147 kg/tonne of biomass following steam pretreatment and enzymatic hydrolysis. Bioconversion of the no-leaf coppice (NLC) achieved a 67% overall sugar recovery, showing no significant difference to mature whitewood from forestry plantation (WWF, 71%). The overall sugar yield of NLC was 135 kg/tonne less than that of WWF, due to the low inherent sugar content in original biomass. An economic analysis shows the minimum ethanol selling price required to cover the operating cost of NLC bioconversion was $1.69/gallon.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Leaf removal resulted in significant improvement in overall monomeric sugar production from SRC biomass. Leaf removal is essential to achieve good yields in bioconversion of poplar. Economic analysis suggests the NLC could be a reasonable feedstock provided it can be obtained at a discounted price.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28592993</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.</ArticleTitle>
<Pagination>
<MedlinePgn>144</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13068-017-0829-6</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Feedstock cost is a substantial barrier to the commercialization of lignocellulosic biorefineries. Poplar grown using a short rotation coppice (SRC) system has the potential to provide a low-cost feedstock and economically viable sugar yields for fuels and chemicals production. In the coppice management regime, poplars are harvested after 2 years' growth to develop the root system and establish the trees. The biomass from these 2-year-old trees is very heterogeneous, and includes components of leaf, bark, branch, and wood chip. This material is quite different than the samples that have been used in most poplar bioconversion research, which come from mature trees of short rotation forestry (SRF) plantations. If the coppice management regime is to be used, it is important that feedstock growers maximize their revenue from this initial harvest, but the heterogeneous nature of the biomass may be challenging for bioconversion. This work evaluates bioconversion of 2-year-old poplar coppice and compares its performance to whitewood chips from 12-year-old poplar.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The 2-year-old whole tree coppice (WTC) is comprised of 37% leaf, 9% bark, 12% branch, and 42% wood chip. As expected, the chemical compositions of each component were markedly different. The leaf has a low sugar content but is high in phenolics, ash, and extractives. By removing the leaves, the sugar content of the biomass increased significantly, while the phenolic, ash, and extractives contents decreased. Leaf removal improved monomeric sugar yield by 147 kg/tonne of biomass following steam pretreatment and enzymatic hydrolysis. Bioconversion of the no-leaf coppice (NLC) achieved a 67% overall sugar recovery, showing no significant difference to mature whitewood from forestry plantation (WWF, 71%). The overall sugar yield of NLC was 135 kg/tonne less than that of WWF, due to the low inherent sugar content in original biomass. An economic analysis shows the minimum ethanol selling price required to cover the operating cost of NLC bioconversion was $1.69/gallon.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Leaf removal resulted in significant improvement in overall monomeric sugar production from SRC biomass. Leaf removal is essential to achieve good yields in bioconversion of poplar. Economic analysis suggests the NLC could be a reasonable feedstock provided it can be obtained at a discounted price.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dou</LastName>
<ForeName>Chang</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</Affiliation>
<Identifier Source="ISNI">0000000122986657</Identifier>
<Identifier Source="GRID">grid.34477.33</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marcondes</LastName>
<ForeName>Wilian F</ForeName>
<Initials>WF</Initials>
<AffiliationInfo>
<Affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</Affiliation>
<Identifier Source="ISNI">0000000122986657</Identifier>
<Identifier Source="GRID">grid.34477.33</Identifier>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, Brazil.</Affiliation>
<Identifier Source="ISNI">0000 0004 1937 0722</Identifier>
<Identifier Source="GRID">grid.11899.38</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Djaja</LastName>
<ForeName>Jessica E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</Affiliation>
<Identifier Source="ISNI">0000000122986657</Identifier>
<Identifier Source="GRID">grid.34477.33</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bura</LastName>
<ForeName>Renata</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</Affiliation>
<Identifier Source="ISNI">0000000122986657</Identifier>
<Identifier Source="GRID">grid.34477.33</Identifier>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA.</Affiliation>
<Identifier Source="ISNI">0000000122986657</Identifier>
<Identifier Source="GRID">grid.34477.33</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gustafson</LastName>
<ForeName>Rick</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Biofuels and Bioproducts Laboratory, School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98115 USA.</Affiliation>
<Identifier Source="ISNI">0000000122986657</Identifier>
<Identifier Source="GRID">grid.34477.33</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Economic analysis</Keyword>
<Keyword MajorTopicYN="N">Leaf removal</Keyword>
<Keyword MajorTopicYN="N">Poplar</Keyword>
<Keyword MajorTopicYN="N">Saccharification</Keyword>
<Keyword MajorTopicYN="N">Short rotation coppice</Keyword>
<Keyword MajorTopicYN="N">Steam explosion</Keyword>
<Keyword MajorTopicYN="N">Sugar yield</Keyword>
<Keyword MajorTopicYN="N">Whole tree harvest</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>05</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28592993</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-017-0829-6</ArticleId>
<ArticleId IdType="pii">829</ArticleId>
<ArticleId IdType="pmc">PMC5460468</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Agric Food Chem. 2014 Nov 5;62(44):10768-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25318692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2011 Jan 5;48(1):54-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22112771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):681-716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25733011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Dec 24;8:226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26705420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2007 Sep;98(13):2503-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17113771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Jan;102(2):1352-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(1):15-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2009 Mar-Apr;25(2):333-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19294662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Dec;101(23):9114-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20685116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 May;207 :157-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26881333</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Brésil</li>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
<li>État de São Paulo</li>
</region>
<settlement>
<li>São Paulo</li>
</settlement>
<orgName>
<li>Université de São Paulo</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Dou, Chang" sort="Dou, Chang" uniqKey="Dou C" first="Chang" last="Dou">Chang Dou</name>
</region>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
<name sortKey="Djaja, Jessica E" sort="Djaja, Jessica E" uniqKey="Djaja J" first="Jessica E" last="Djaja">Jessica E. Djaja</name>
<name sortKey="Gustafson, Rick" sort="Gustafson, Rick" uniqKey="Gustafson R" first="Rick" last="Gustafson">Rick Gustafson</name>
<name sortKey="Marcondes, Wilian F" sort="Marcondes, Wilian F" uniqKey="Marcondes W" first="Wilian F" last="Marcondes">Wilian F. Marcondes</name>
</country>
<country name="Brésil">
<region name="État de São Paulo">
<name sortKey="Marcondes, Wilian F" sort="Marcondes, Wilian F" uniqKey="Marcondes W" first="Wilian F" last="Marcondes">Wilian F. Marcondes</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001494 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001494 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28592993
   |texte=   Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28592993" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020